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Chapter 1

Introduction

The design of multivariable control systems has gathered considerable research interest over the

years. In modern technology, the ability to simultaneously obtain the desired behavior of multiple

variables is a key task with a plethora of possible applications [1–6]. The most obvious example

of multivariable control is an issue concerning the control of robotic manipulators, especially

the position control of its working tip. Naturally, such advanced control scenarios would not be

possible without proper mathematical descriptions of considered processes. Therefore, at the

foundations of control theory, there are frameworks regarding system descriptions. While the

polynomial-based input-output description became very complex for multivariable systems, a

solution to this is a matrix-based state-space description [7–9].

With the use of the state-space framework, effective control algorithms for multivariable

plants have been significantly simplified. With the admission of burdensome polynomial equa-

tions the computational effort was limited and calculation errors were avoided. Naturally, well

known matrix properties can be used here to describe control systems. For example, plant stabil-

ity is clearly connected with system matrix eigenvalues. Moreover, the considered system notion

provides, in comparison with input-output instances, an additional state vector which reflects

the inner states of plant. Additionally, the state-space description allows to assume non-zero

initial conditions, which is a very useful feature. With the knowledge of both inner and outer

states of system there is a wide possibility to create different control structures.

The provided system description allowed to obtain new control strategies, previously not

available for systems described by transfer functions. The concept of state-feedback system has

gathered wide scientific effort. With the negative gain fed from a state vector, the closed loop

plant can arbitrarily be influenced by proper control design [10–12]. From simple stabilizing

scenarios to advanced pole-placement instances, the state-feedback method is subject to numer-

ous studies. The pole-placement method allows to move the eigenvalues of closed-loop system

matrix over the complex plane in order to obtain desired system properties. The state of the art

is to place all system poles exactly at zero, which provides extreme behavior of control instances.

A recently described deadbeat response can be characterized by high control speed and accu-

racy. Naturally, the concept of placing all closed-loop system poles at zero have found numerous
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industrial applications alongside theoretic considerations [13–17]. Alongside classic deadbeat

control, its alternative form focusing on the output signals was developed. The so-called output

deadbeat control aims to provide output stabilization while accounting for certain limitations.

Both of state-feedback control schemes mentioned here can be solved in different ways obtaining

different properties under the same eigenvalues. However, the focus on obtaining desired output

signals with possibly low control error seems to be an interesting idea.

The perfect control is another strategy consisting of the feedback taken from the state vector.

However, in contrast to previously presented control laws, the perfect control focuses only on

the control error, obtaining its possible lowest value as the output vector reaches its reference

values right after the delay derived from the system description. The perfect control can be

obtained by proper inverse-based state-feedback which guarantees desired system response. It

has been shown that the perfect control can be further enhanced with the application of various

matrix inverses [8, 18, 19]. When in cases covering square systems there is only one available

solution, in the nonsquare case there is a wide range of possibilities. The use of nonunique

inverses may result in different properties obtained within the minimum variance/perfect control

framework [8, 19–22]. For example, the well known problem of unstable Inverse Model Control

(IMC) in case of non minimum-phase systems can be overthrown with proper choice of inverses

in a simple way. Moreover, thanks to nonunique inverses, the perfect control systems can gain

its traits as speed or robustness. The poles of closed-loop perfect control can be placed almost

arbitrarily just by application of other than minimum-norm inverses.

During the pursuit of robust, maximum-speed or/and minimum-energy perfect control, the

different inverses were examined in the context of obtained closed-loop properties. Having a wide

range of available tools, the idea of placing all closed-loop perfect control system poles at zero has

recently been revealed. With proper selection of inverses, degrees of freedom joining properties

of deadbeat and perfect control were obtained. With the closed-loop system matrices being

nilpotent, the steady state occurs in almost no time. Simultaneously, with respect to the perfect

control design, the output remains on the reference value with the lowest possible control error.

Therefore, the pole-free perfect control became a subject of intense research efforts [23–26].

A number of analytic requirements of pole-free perfect control was presented. These require-

ments were divided in two categories. First category is a group of limitations and rules that

need to be fulfilled before the proper control design process. A structure of control plant and

its properties, such as controllability and observability were the main requirements there. On

the other hand, formulas that need to be fulfilled during the control process are also discussed.

More procedures enabling to calculate pole-freeing degree of freedom β of right σ-inverse were

obtained by complex inverse matrix calculation. These procedures allowed to perform numerous

simulation examples aiming to reveal the pole-free perfect control properties.

With efficient simulation tools, a plethora of intriguing behaviors was observed in the pole-

free perfect control instances. Exactly as expected, the developed control strategy results in

highly varying signals with high amplitudes, but the steady states are obtained in possibly lowest

control times. However, among expected properties previously unseen energy-based irregularities
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have occurred. The pole-free perfect control eradicates the usual compromise between control

energy and speed [27]. A single example in which the pole-free instance resulted in control energy

lower than in minimum-norm approach was followed by a complex study regarding energy-based

performance indices. With the use of the mentioned indices, the proper energy-based comparison

was enable. Therefore, a possibility to anticipate energy outcome of different control instances

was obtained with a simple analytic indices [28,29].

As the pole-free perfect control seems to be an interesting control strategy in terms of both

control speed and energy, this thesis constitutes a survey of this topic. Therefore, this work is

organized as follows. At the beginning a wide mathematical background is given. The basic

formulas considering system description, matrix inverses and matrices itself are presented. In

Chapter 3, the topic of control strategies based on the state-feedback is reflected upon. A

brief comparison of various control laws has shown that different closed-loop properties can

be obtained with various state feedbacks. Then the pole-free perfect control is described in

Chapter 4. A survey of pole-free requirements, traits and simulation examples presented within

this chapter constitutes the main part of this thesis. Moreover, a numerical procedure allowing

to obtain the pole-free perfect control under certain limitation is given in this chapter. Following

the fundamental pole-free consideration, a energy-based study is presented in Chapter 5. Useful

tools to evaluate pole-free and stable-pole instances in the context of state and control energies

are also provided here. Final conclusions are given in the last chapter of this Ph.D. thesis.
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Chapter 2

Mathematical preliminaries

In this chapter, the basic mathematical issues and definitions are presented. Although this is just

a survey of the well-known rules and regularities, the content can help to understand the matter

investigated throughout this thesis. A wide range of matrix properties with some theorems are

discussed here. Together with basics of matrix calculus, the problem of matrix inverse is given

alongside the system description, which consolidates the matrix nature of conducted study.

2.1 System representation

The system representation is crucial during design of all advanced control strategies. The frame-

work of description considering a part of real plant is almost always simplified to a degree in

regards to a real process. In this particular study the classical state-space framework originally

introduced by Rosenbrock in early 70’s is used [3]. This concept is especially useful for multi-

variable or multiple-input/multiple-output (MIMO) systems, due to its parameter matrix-based

nature [30]. The disposal of polynomial matrices from the input-output descriptions led to a

significant restriction of needed computional effort and unwanted calculation errors [31]. Thus,

in this study the multivariable state-space framework is used to describe the linear (or rather

linearized) plants.

Let the n-th order linear time-invariant (LTI) MIMO system with nu-input variables of u(k)

be described in the following manner

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (2.1)

where A ∈ <n×n and B ∈ <n×nu denote the state and input matrices, respectively, while x(k)

covers the state vector in discrete time k. This equation is used to describe the auto-regressive

part of the plant. Within this formula the whole dynamics is described. In several cases,

this equation is treated as a standalone system description focusing on the internal states of

the control plant. However, to fully describe the system, together with the outputs, a second
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expression is needed. Hereafter, in this consideration the ny-output vector is in the form of

y(k) = Cx(k), (2.2)

where output matrix C ∈ <ny×n is assumed. The parameters of aforementioned matrices A, B

and C are obtained during the process of identification [32–34]. Of course, the model described

in the discrete-time state-space framework can employ different properties covering the behaviors

of the considered plant. One of most frequently discussed trait of the system is its stability.

Remark 2.1 In plethora of literature the feed-forward matrix D is considered. In this case the

output equation (2.2) is expressed as follows

y(k) = Cx(k) + Du(k),

with D ∈ <ny×nu. Nevertheless, in this study this matrix is omitted due to targeting a clear

notion of more complex equations presented later in the thesis.

For years many different definitions of stability have been proposed for a wide range of

considered systems [35, 36]. Nevertheless, in this study the stability of open-loop system is

determined using the characteristic polynomial in the form of

pA(λ) = det(λIn −A), (2.3)

where In denotes n-by-n identity matrix, and λ is some complex variable. As the matter pre-

sented in this thesis regards time-invariant plants with constant single unit delay, this framework

is sufficient for the research to be presented. Moreover, the roots of characteristic polynomial,

often called poles of the open-loop system, can be calculated according to the following charac-

teristic equation

det(λIn −A) = 0. (2.4)

Another important plant behaviors are observability and controllability. The aforementioned

properties are often crucial during the design of control schemes. For example, the plant is

needed to be controllable during many control problems, such as optimal control problem or

stabilization of unstable systems by proper feedback [37–39]. Notwithstanding, in some cases

the controlability is not necessary. Sometimes there is consent for plant having uncontrollable

modes, but therefore these modes need to be stable.

2.2 Matrix Inverses

The calculation of proper matrix inverse is a highly developed research area which has atttracted

considerable interest during past years. As an issue that requires considerable computational
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effort and mathematical background, this topic has combined the developments coming from

both theoretical and practical approaches [8, 9, 21, 40, 41]. Beginning at the inverse calcula-

tion considering the simple well-posed low rank matrices, this issue evolved to solve tasks of

unimaginable sizes [18, 41]. Nevertheless, there are still a plethora of scientific projects aiming

the improvement in matrix inverse calculations and its possible applications [42]. Moreover,

numerous advancements that have originated from studies considering square matrices can be

adapted to the nonsquare cases.

The basics of matrix inverse problem have been defined as a quest to find such matrix M−1 for

given matrix M that its product will be equal to a unity or identity matrix In. The calculation

of square inverse matrices is a complex problem, relying on the numeric procedures devoted

to this area. Especially, the issue intensifies with matrices that are not well-posed, triangular

matrices, sparse or in general, matrices that have inverses which are not well-conditioned.

However, the admission of nonsquare matrices for calculation of their inverses, together with

their square analogues, has found wide implementation in control theory, thus this subsection

is devoted to them. Moreover, in the effort considering nonsquare matrices, square inverses are

often used with their application to some Hermitian forms, therefore the mentioned area is not

to be omitted in this consideration [43].

Basing on the properties of square inverses, the more complex nonsquare instances can be

indicated. The general case of pseudo- or generalized-inverse M+ needs to satisfy four Moore-

Penrose requirements. The first two conditions are as follows

MM+M = M, (2.5)

and

M+MM+ = M+, (2.6)

where MM+ = In is not necessary to hold, in general. The last two requirements are

(MM+)T = MM+, (2.7)

and

(M+M)T = M+M. (2.8)

With fulfillment of all the above relations, the generalized inverse can be established. Of course,

different frameworks considering generalized inverse have been known for years.

In the case of full rank parameter matrices, some simpler rules can be preserved. These

are dealing separately with the so-called right and left inverse of nonsquare matrix. The right

inverse is needed to fulfill the following relation

MMR = In, (2.9)
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whereas the left inverse submits to the equation in form of

MLM = In. (2.10)

These inverses can be calculated in different manners. The main distinctions between various

inverse frameworks consider such properties as rounding and cut-off errors, computational effort

or complexity. Next, some of the most commonly used inverses will be presented in order to

clarify their notions and features.

2.2.1 Unique T -inverse

A first of considered inverses is the unique T -inverse, which has only one solution for specified

nonsquare matrix. The uniqueness following this inverse entails that the T -inverse is often used

as a benchmark for other inverses [8]. Consider a M ∈ <m×n arbitrary matrix. The right

T -inverse of M can be calculated according to the following equation

MR0 = MT(MMT)−1, (2.11)

while the left T -inverse can be obtained from

ML0 = (MTM)−1MT. (2.12)

In various tasks the T -inverse, thanks to its minimum-norm property, results in least squares or

minimum-norm solutions. Nevertheless, it has been shown that in some distinguished manners

this inverse can be outperformed by the nonunique ones, which will be presented in the upcoming

subsections.

2.2.2 Nonunique σ-inverse

In this subsection the σ-inverse is shortly discussed. The mentioned nonunique inverse gathered

considerable research interest due to its clear basics and relatively low computational effort.

The application in control theory has proven the σ-inverse to have desired properties in terms

of stabilization, robustification and energy optimization [44, 45]. Its right-invertible equivalent

sounds as follows

MR = βT(MβT )−1, (2.13)

where β ∈ <m×n is the so-called degree of freedom. This degree of freedom allows to form

the obtained inverse to obtain the desired properties with almost no limitation. The only

requirement is for the matrix product (MβT) to be right-invertible. Of course, for the matrices

with m < n the valid is left σ-inverse in the following form

ML = (βTM)−1βT, (2.14)
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with (βTM) being a full rank. Below an exemplary right σ-inverse is shown. It is worth em-

phasizing that the nonunique inverse can result in infinite number of different numeric instances

of matrices, all fulfilling the requirements imposed to the inverse matrices. Thus the ’good’ or

’bad’ degrees of freedom provide of the specific application of inverse to be obtained.

2.2.3 Nonunique H-inverse

Another of the inverses used in this thesis is the nonunique H-inverse, which is far more complex

than previous ones [46]. In this case, at the beginning, the Singular Value Decomposition (SVD)

has to be calculated in the following form

M = UΣVT, (2.15)

where Σ contains eigenvalues, U and V are right- and left- eigenvector, respectively. Basing on

the well-known rule of inverse calculation for square matrix product the wanted unique inverse

can be obtained as follows

M−1 = (VT)−1Σ−1U−1. (2.16)

Nevertheless, in the nonsquare case, the degrees of freedom in form of L reveal in the inverse

procedure. Having a matrix with m 6= n we calculate the SVD-related Σ matrix in the form of

Σ =
[
Λ 0

]
or Σ =

[
Λ

0

]
, (2.17)

with 0-matrices of dimensions depending whether the matrix M is right- or left-invertible. Of

course, in the square M case the presented zero matrix does not appear. Moreover, Λ is a

diagonal matrix involving the eigenvalues of M in the following manner

Λ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . .
...

0 . . . . . . λn

 . (2.18)

Thus, during the pursuit of nonsquare matrix inverse based on the SVD procedure, the challenge

is to find such Σ inverse that results in a required numerical solution. Interestingly, since the

inverse of matrix Λ is rather a trivial problem, the inverse of nonsquare Σ can also be obtained

in a simple way according to

ΣR =

[
Λ−1

L

]
or ΣL =

[
Λ−1 L

]
, (2.19)

where L is the so-called degree of freedom, depending on the sizes of original matrices M. Here

the degrees of freedom reveal crucial feature in the nonunique approach to nonsquare matrix

inverses. This ability to manage the solution of inverse problem is usually used to overcome
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the numerical issues. Of course, in the case of H-inverse such inconveniences are limited to the

inverse of square matrix λ, so there is no way to improve them in this context. However, the

whole H-inverse itself seems to be robust in terms of limitations tied to degrees of freedom. In

contrast to the β of σ-inverse, the matrix L can be chosen arbitrarily, without any restrictions.

Back to the inverse, in case of right-invertible matrices, the right H-inverse can be obtained

with the following formula

MR = (VT)−1ΣRU−1, (2.20)

whilst the left H-inverse is calculated in the following way

ML = (VT)−1ΣLU−1. (2.21)

Of course, the usage of H-inverse needs to be suited to a particular application. This can be

done by choosing a proper degree of freedom, satisfying more then just computational require-

ments imposed on the obtained solution. It is worth mentioning, that this particular inverse has

recently found innovative application in the multidimensional wireless data transmission.

2.3 Nilpotent matrices

During the stability analysis of control plants the ratio of energy stored inside the system is

crucial. If the ratio is above unity, the system drifts towards its unstable regions. In the opposite

scenario, when this coefficient is lower then unity, the internal plant energy will converge to zero,

assuming that no additional power is fed to the system. Taking into consideration the auto-

regressive systems, it is clear now that for a high enough sampling time k, all signals will be

equal to zero. Same as in linear algebra, there is a concept of matrices that for high enough

power the matrix converges to a zero matrix. The definition of property called nilpotency can

be found in open literature. In the largest part of literature the nilpotent matrix is understood

in terms of matrix having its power k, for which the following expression holds

Mk = 0. (2.22)

It is worth mentioning that the integer coefficient k is often called an index of nilpotence.

Moreover, the nilpotency of matrix M ∈ <n×n is associated with a number of properties. The

characteristic polynomial of nilpotent matrix is in form of

pM(λ) = λn. (2.23)

From the above the next property can be obtained. Having such a characteristic polynomial, it

is clear that all of matrix eigenvalues are equal to zero. Next property states that the trace of

any matrix power k submits to the following equation
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tr(Mk) = 0. (2.24)

However, these properties are not obtained for all matrices with Mk = 0. It is rather obvious,

that matrices with eigenvalues within unitary disc have such k for which the matrix power

converges to zero matrix. In such case, the matrix can be called nilpotent, but the nilpotence

index can be very high. These circumstances leading to merge of convergent and nilpotent

matrices.

Therefore, in this thesis, the matrix is treated as nilpotent iff for square matrix M ∈ <n×n

there exists an integer power k ≤ n that satisfies Eq. (2.22). Such approach restrict the usage

of the term ’nilpotent’ beyond just convergent matrices. Moreover, this limitation also provides

the properties mentioned earlier in this subsection.

2.4 Cayley-Hamilton theorem

In linear algebra, the Cayley-Hamilton theorem deals with square matrices over a commutative

ring. Therefore, the particular parameter matrices can be considered. The mentioned theorem

states, that examined matrices fulfill their own characteristic equations. With the characteristic

polynomials defined as in Eq. (2.3) the Cayley-Hamilton theorem imposes the following relation

pM(M) = 0. (2.25)

Naturally, the Cayley-Hamilton theorem can easily be demonstrated. Having the characteristic

polynomial of complex variable λ in the form of pM(λ) = det(λIn−M), let us make a substitution

λ = M. The result is immediately obtained in the form of det(MIn −M) = 0.

It is worth mentioning that the Cayley-Hamilton theorem also covers the polynomial and

rational matrices or even fractional-order systems. More information considering this matter

can be found, for example, in Ref. [47].

The main advantage coming from the Cayley-Hamilton theorem is a fact, that the minimal

polynomial of given matrix is a divider of its characteristic polynomial. This feature can be

used, for example, in calculating the matrix Jordan normal form described in the next section.

2.5 Jordan normal form

Matrix diagonalization is a well-known process widely used in the mathematical transformations,

proofs and other calculations. In the simplest manner, the diagonal form can be obtained with

the following relation

diag(A) = P−1AP. (2.26)

Of course, the diagonal matrix diag(A) contains all eigenvalues of matrix A on the main
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diagonal, with all other entries equal to 0. In the control theory, the diagonal form is often

applied to the system matrix A (see Eq. (2.1)) in order to reveal system eigenvalues.

Nevertheless not all matrices are diagonizable, thus this consideration is not applicable in

every cases. Although the requirements that the matrix needs to fulfill will not be presented

here, the remedy in form of generalized diagonalization is briefed below. Two different strategies

can be considered under the term generalized diagonalization. The first one is well-known

SVD procedure, mentioned in Eq. (2.15), in which the matrix with original eigenvalues is

obtained. The second one is a Jordan normal form, which is used in this thesis along with other

matrix transformations. During the analysis of matrices with multiple eigenvalues, multiple zero

eigenvalues, non-full rank matrices, or singular matrices, the strict diagonal form often does not

exist. In such cases, the almost diagonal Jordan normal form can be used.

The Jordan normal form, often called Jordan canonical form, can be obtained with the use

of the following equation

J(A) = P−1AP, (2.27)

for a certain proper matrix P. The mentioned, almost diagonal form is of the following structure

J(A) =


J1 0 . . . 0

0 J2 . . . 0
...

...
. . .

...

0 0 . . . Jn

 , (2.28)

where 0 denotes a zero block matrix. Additionally, Ji=1,...,n stands for associated with i-th

eigenvalue Jordan matrix in the form of

Ji =


λi 1 . . . 0

0
. . . . . . 0

...
. . . . . . 1

0 . . . 0 λi

 . (2.29)

2.6 Sum of matrix series

Similarly to the paradigm of the classical mathematical meaning, if matrices are a part of

geometric series, their sums can be calculated as long as the series are convergent. In the case of

matrix geometric series, the convergence is related to the eigenvalues of the respective matrices.

If all eigenvalues are contained within the unit disc, then the series converge to a zero matrix

for a high enough matrix power. In such a case we have

∞∑
n=0

Mn = SM. (2.30)

The sum can be obtained with some mathematical operations. After defining the expression
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SM = In + M + M2 + M3 + . . . (2.31)

multiplicated by M the following formula holds

MSM = M + M2 + M3 + . . . . (2.32)

Thus, we easily obtain

(In −M)SM = In, (2.33)

and finally

SM = (In −M)−1, (2.34)

recalled with factor (In −M) being a full rank matrix. The application of mentioned rule can

be found in brief numerical example presented below.

2.7 Matrix exponential

The matrix exponential is a natural expansion of the classical exponential function into the

matrix calculus. While the classical exponential can be calculated as a sum of power series as

follows

ex =

∞∑
k=0

xk

k!
, (2.35)

the same can be applied to the matrix exponential. Thus, it can be obtained using the following

formula

eM =

∞∑
k=0

1

k!
Mk. (2.36)

In the nilpotent case, the matrix exponential can be obtained directly from the series expansion

eM = M0 + M1 + . . .+
1

k − 1
Mk−1, (2.37)

where k denotes the rank of nilpotence as in Eq. (2.22). Additionally, there is yet one interest-

ing equation considering the matrix exponential. The Jacobi formula represents a connection

between determinant of matrix exponential and exponential of matrix trace as follows

det(eM) = etr(M). (2.38)
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Chapter 3

State-feedback control strategies

During the design of control schemes, the main goal is to shape the plant response and charac-

teristics to a desired state. In a great number of applications, this can be obtained by means of

proper feedback. This feedback can be taken from both state and output variables. The output

feedback is one of the main tools during the design of controllers for transfer functions in the

input-output system descriptions. On the other hand, the state-space framework provides addi-

tional state vector. Using the supplementary information coming from the knowledge regarding

the internal state along with observable outputs, there is almost infinite number of possible

control schemes. Of course, the only limitation in this case is the controlability and maximum

signal amplitudes which can be considered in the specified system. To fully benefit from the

advances derived from the state-space framework, the state-based feedback in the following form

u(k) = −Kx(k) + v(k), (3.1)

where v(k) is the new reference input, can be introduced. In such a case, the system can be

treated as a closed-loop one. The provided feedback can change system characteristics, therefore

the closed-loop formula can be used in the following form

x(k + 1) = (A−BK)x(k) + Bv(k), x(0) = x0. (3.2)

This expression shows the behavior of state equation. Naturally, the second state-space frame-

work equation remains unchanged.

Of course two different scenarios should be considered here. In the unstable case the sim-

ulation horizon needs to be appointed arbitrarily as there is no reasonable restriction despite

computational effort. However, in a stable case, the boundaries of meaningful calculations are

clear, since after enough simulation steps the system reaches its steady-state. Of course, the

eigenvalues connected with the stability of closed-loop plant can be calculated from

det(zI−A∗) = 0, (3.3)

with the substitution A∗ = A−BK.
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It is clear, that the simulation horizon N is associated with the lowest power of matrix

(A∗)N−1 = 0. (3.4)

Of course, in the examined case the arbitrary sample of state vector can be calculated from the

x(k) = (A∗)kx(0), (3.5)

for all k < N .

Naturally, the behavior of the closed-loop system can now be assigned almost arbitrarily.

Poles, zeros, transient states and settling time of considered plant may be influenced with proper

feedback. During past decades, a plethora of different control strategies have been developed.

In the following chapter, some of them shall be shortly described in order to show characteristic

peculiarities and differences between them.

3.1 State deadbeat control

The concept of proper linear feedback applied to the state-space systems is continuously subject

to wide research scope. The natural succession of development in this area resulted in idea of

placing all closed-loop poles at zero. With astonishing performance observed in terms of control

speed, the deadbeat control became one of deeply developed frameworks. As result of different

advanced studies, the traits of considered control strategy are obtained such as robustness,

minimum settling time or even LQ optimality [48,49].

With the opportunity to obtain different properties it seems even more interesting to take

systems with more input than state variables into account. In such a case the matrix of static

gain in the state-feedback framework can submit to multiple outer limitations, fulfilling the

deadbeat requirements at the same time. For example, the deadbeat control can be enhanced

in terms of robustness or control energy.

The deadbeat control can be achieved in several manners. The most common way is to solve

a parameter matrix symbolic equation to obtain symbolic eigenvalues and then equaling them

to zero.

The second possible technique devoted to placing all eigenvalues of closed-loop matrix at

zero involves the already mentioned inverses. It has been shown that basing on the parameter

matrices from the system description, there is a possibility to obtain the deadbeat properties [50].

In such a case the application of state feedback in form of

u(k) = −B−1Ax(k), (3.6)

in the square matrix B scenario, or

u(k) = −BRAx(k), (3.7)
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when more inputs than state variables occurred is justified. It is worth mentioning that the

requirement of n ≤ nu needs to be fulfilled here. It is also worth mentioning that in the second

nonsquare case there is a possibility to apply any nonsquare matrix right-inverse. However, the

minimum-norm unique T -inverse is used most frequently, as it is correlated to the minimum-

energy input property. Let us now switch to two corresponding simulation examples involving

the new issues.

Figure 3.1: Control, state and output signals: Zero-state deadbeat control

The closed-loop plant with equivalent Jordan normal form J =

[
0 0

0 0

]
differs from the one

obtained in the former deadbeat instance, thus the distinction can be performed in an analytical

way.

3.2 Output deadbeat control

The output deadbeat control is yet another state-feedback-based control strategy [51–53]. Nev-

ertheless, the objective is slightly different here. The minimization of control error and output

settling time is rather prioritized over eigenvalue placement. In this context, the term ’deadbeat’

refers to the steady-state of the output variables obtained in a less than arbitrary number of

steps. Of course, the output settling time is expected be possibly low. In other words, the

challenge present during the design of output deadbeat scheme is to find such a state feedback

that will guarantee the following behavior

C(A + BK)kx(0) = 0, ∀x(k), k ≥ γ. (3.8)

Of course, γ denotes the settling time, after which the output remains at the setpoint. However,

such behavior is hard to obtain in an analytical way, thus another indicators shall be concerned.

In the case, whenever it is possible, the mentioned behavior is related to the problem of locating

all so-called output eigenvalues at zero. Let the output eigenvalues be defined as roots of the

following expression

det(C(A + BK)) = 0. (3.9)
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The output deadbeat control is naturally obtained by finding proper state feedback, thus this

control strategy is mentioned there. Of course this particular consideration is valid only if the

matrix from Eq. (3.9) is a square one.

As it is stated, the main goal of output deadbeat control is to obtain the steady state of

output variables in possibly no time. However, in opposite to the state deadbeat framework

there is no such clear analytical indices that will facilitate the scientific effort.

Figure 3.2: Control, state and output signals: Output deadbeat control

The output deadbeat properties can be also revealed with the output matrix

CA∗ =

[
−0.7053 1.8962

−0.2623 0.7053

]
,

with zero eigenvalues, so the output deadbeat control has just been established. However, this

particular example does not reach the maximum possible speed in terms of obtained output

steady state. Therefore, it is clear, that with feedback better than in above scenario there is a

possibility to improve this control strategy.

Moreover, as in the classical state deadbeat there is not only possibility to obtain zero

eigenvalues, but also entire considered matrix equal to a zero matrix. Nevertheless, this case is

a different self-sufficient research area, called the perfect control, described in the next section.

3.3 Unstable/stable-pole perfect control

Perfect control is one of the most demanding control strategies. The main trait of this control

strategy is the lowest obtainable control error, as it disappears right after delay derived from

system description. This behavior can be achieved by minimization of proper performance index

as follows

e =
N−1∑
k=0

((yref(k)− y(k))T(yref(k)− y(k)). (3.10)

In the case of systems with delay d = 1 this property can be obtained after equating the

one-step deterministic predictor yref(k + 1) to the setpoint as follows

CAx(k) + CBu(k) = yref(k + 1). (3.11)
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From the above-presented predictor the perfect control formula for LTI MIMO discrete-time

state-space systems can be calculated. After some manipulation, the control law sounds in the

following form

u(k) = (CB)R[yref (k + 1)−CAx(k)], (3.12)

where (CB)R stands, e.g., for unique minimum-norm right T -inverse of considered matrix. It is

clear that the perfect control fits into state-feedback expression with

K = (CB)R0 CA. (3.13)

In this scenario, the poles rely on the numerical solution of nonunique inverse (CB)R. After

application of the minimum norm right T -inverse we arrive at the control zeros of first type

connected with the stability of IMC-based plant, such as perfect control [43]. Of course, the

unstable instances are not considered here, as the usage of different nonunique inverses is a

remedy to this event. The proper mathematical effort can guarantee that the stability can be

established, unless there are unstable transmission zeros, if any in the nonsquare case [43,45,54].

The characteristic behavior of perfect control systems can be observed in the exemplary instance

shown below.

Figure 3.3: Control, state and output signals: Stable-pole perfect control

Interestingly, in perfect control instances the obtained output eigenvalues are equal to zero,

same as the whole output matrix CA∗ =
[
0 0

]
. It is clear now, that perfect control is indeed

a special case of output deadbeat control with possibly fastest output stabilization. In contrast

to the deadbeat control from Eq. (3.7), the perfect control simultaneously preserves the nonzero

internal dynamics of perfect control plant.

Summing up, the perfect control algorithm focuses on the setpoint of output variables with-

out any compromises dealing with any other performance indices.
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Chapter 4

Pole-free perfect control

Among different state-feedback-based control systems discussed in the previous section, there is

yet at least one strategy worth of scientific consideration. As it has been shown, perfect control

systems can have different properties. The settling time, sometimes referred to as control speed,

is usually connected to system poles. Thus during the pursuit of the maximum-speed perfect

control the idea is to place all closed-loop control system poles at zero.

The properties connected with zero eigenvalues have already been established for MV control

[43]. Nevertheless, in this stochastic MV case it has been done in a heuristic simple way by

minimization of sum of absolute poles value. The recent studies and developed mathematical

background allow to finally present the whole subject in a comprehensive study.

For now, the arbitrary closed-loop properties were obtained with application of proper state

feedback. In the perfect control scenario the linear gain matrix at first needs to submit to the

following framework

K = (CB)RCA, (4.1)

where in this case (CB)R denotes any right inverse of CB. Now, in the pole-free consideration

the main target is to find such form of any unique/nonunique matrix inverse that will guarantee

the pole-free behavior. It is clear, that the designation ’pole-free’ should be understood in terms

of all closed-loop control system poles placed exactly at zero.

Since the nonunique matrix inverses are involved, the second type control zeros should be

considered here (see Ref. [43]). In this scenario, the closed-loop poles of inverse system (equiva-

lent with control zeros) can be placed almost arbitrarily. The graphical representation of proper

pole-freeing procedure is shown in the figure (4.1).

With the desired zero-location of perfect control closed-loop poles, the system is expected to

obtain possibly lowest settling time and maximum accuracy. Being one of a kind in connection

of deadbeat and perfect control strategies, a plethora of intriguing properties are expected and

welcome. The number of (non)zero eigenvalues obtained under the minimum-norm inverse or

the lowest obtainable steady-state might be a subject of comparison study. Naturally, with dif-

ferent limitations imposed by considered system, the obtained results can vary within simulation

examples.
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Figure 4.1: Idea of pole-free placement

Of course, the pole-free manner, same as a stable-pole one, implies a number of requirements

that need to be fulfilled both before and during control design as well as a plethora of numerical

and structural manners. These criteria are presented in the upcoming section.

4.1 Pole-free perfect control requirements

As in almost every control instance there are some requirements that need to be fulfilled to

ensure that the pole-free perfect control is achievable. At the beginning, the assumptions of

controlability and observability need to be made. In such an extreme control strategy both

of these properties need to be ensured, so the state and output variables can be arbitrarily

moved from chosen set of values to another one. The controlability is especially crucial, as all of

eigenvalues need to be managed by pole-placement method. Moreover, matrices consisting the

system description need also to be of proper dimensions in order to enable the perfect control

development. It is well known, that the perfect control is valid only for right-invertible systems,

so plants with input number equal or larger than number output variables with additional

requirement that matrix CB if of full rank should be examined.

Initially, the pole-free perfect control was connected to the deadbeat-like solution

(CB)R = BRCL, (4.2)
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resulting in zero-closed-loop system matrix end up as follows

A−B(CB)RCA = A−BBRCLCA. (4.3)

However, the Eq. (4.2) is only valid in the case of plants with square matrix C, all supported

by zero control system eigenvalues.

Remark 4.1 It is worth mentioning, that in the case with square matrix C the perfect control

formula reduces to the deadbeat law as in Eq. (3.7). Thus, not only the same eigenvalues are

obtained, but also control and state signals are identical.

Naturally, the requirements needed to obtain the pole-free perfect control are covering those

from stable-pole case, so far. However, some additional limitations are needed here. During

the design of pole-free perfect control it is necessary to influence eigenvalues of the closed-loop

matrix. Thus, the number of independent degrees of freedom needs to be at least equal to

number of linearly independent eigenvalues that are equated to zero. This property cannot be

obtained during the proper process of control design, as the size of matrix consisting degrees of

freedom is strictly connected to the sizes of matrices of state-space description.

It is worth mentioning that the system matrix A is not necessarily needed to be of full rank.

This is supported by fact, that the target is to reduce the number of non-zero eigenvalues, so

any rank-reducing factors are not strictly forbidden. However, the mentioned system still needs

to be controllable. In particular this requirement applies to non-zero mods that will disable

the pole-free perfect control design. As the rank of closed-loop system matrix is related to the

number of its unique eigenvalues, the open-loop system matrix shall adhere to the following

relation

rank(A) ≥ ny. (4.4)

In the minimum-norm perfect control design the closed-loop system rank is usually connected

with number of system outputs, so this also shows, that the closed-loop system matrix will be

of maximum ny-rank.

Additional requirement can be included after considering the already mentioned Jordan

normal form derived from Eq. (2.27) as follows

tr(J(A∗)) = tr(P−1A∗P). (4.5)

Thus, having all eigenvalues on the main diagonal, the pole-free requirement suddenly clarifies.

As the target is to obtain zero eigenvalues it is clear that the trace of closed-loop matrix submits

to the following equation

tr(A∗) = 0. (4.6)

The last pole-free perfect control requirement is based on the Cayley-Hamilton theorem. It was

shown, that every square matrix fulfills its characteristic polynomial being monic polynomial. In

order to place all poles at zero it is necessary to shape the characteristic polynomial to have only
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zero parameters beside its highest power-based factor. This will ensure, that the only eigenvalue

is multiple zero root of characteristic equation. To obtain this pole-free property, the subsequent

expression should hold

(A∗)n = 0. (4.7)

Of course, the number of linear independent parameters consisting the degrees of freedom needs

to be at least equal to the number of poles that need to be placed.

In order to greater diversification of pole-free and stable-pole perfect control scenarios, the

crucial differences are given in the next section.

4.2 Pole-free vs. stable-pole perfect control

In this section, a study showing the distinction between different perfect control manners is

shown. The different properties enabled by proper pole-placement method applied to the perfect

control manner can result in advancement in terms of speed, control energy, robustness or

stability. To properly compare two different perfect instances some performance indices, other

than in Eq. (3.10), need to be defined. For this reason the two versions, unique and nonunique

ones, will be compared in terms of settling time and control energy. The mentioned control

energy will be considered as

E =

N−1∑
k=0

u2(k), (4.8)

where u2(k) denotes the vector of squared control values obtained during simulation run. With

such a performance index, it is possible to compare pole-free and stable-pole instances in the

context of control energies.

During the study, the control energy will be denoted twofold. In the case of minimum-norm

right T -inverse applications, the obtained energy will be called ESP as related to stable nonzero

poles. On the other hand, the perfect control energy of instances covering the pole-free-based

behavior will be named EPF.

It is also worth mentioning that the perfect control scenarios can also be differentiated in

terms of other than control energy derived from the potential of input variables.

Example:

Consider again a second-order 3-input system described by the following matrices A =[
−0.3700 1.4500

−1.9200 0.8000

]
, B =

[
−0.4500 0.9000 −1.5000

1.4000 −0.8200 0.1000

]
, C =

[
−0.2000 0.4000

]
, with initial

condition xT0 =
[
−3 6

]
. With the minimum-norm right T -inverse applied into perfect control

design the following closed-loop system matrix is obtained as A∗ =

[
−1.4681 1.4975

−0.7340 0.7487

]
. The
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signals with control energy ESP = 221.5384 are presented below.

Figure 4.2: Control, state and output signals: Stable-pole T -inverse-based instance

On the other hand, with the application of right σ-inverse with attached degrees of freedom

β =

13.3690

1.1607

−0.5569

, the following state feedback is obtained K =

−1.1728 0.0507

−0.1018 0.0044

0.0489 −0.0021

. The

pole-free perfect control system is now described by the nilpotent closed-loop matrix A∗ =[
−0.7328 1.4657

−0.3664 0.7328

]
with its Jordan normal form J(A∗) =

[
0 1

0 0

]
. Signals obtained during the

simulation run are presented in the chart below.

Figure 4.3: Control, state and output signals: Pole-free σ-inverse-based instance

In this pole-free instance the control energy is equal to EPF = 175.3333. With EPF < ESP this

example can be a basis for more advanced energy-based research, done later in this thesis.
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4.3 Special MISO second-order case using σ-inverse

The general case of pole-free perfect design requires some sophisticated calculation considering

symbolic variables representing the feedback matrix. Such approach is usually used throughout

this thesis to obtain proper degrees of freedom.

Nevertheless, it has been observed that there are some special cases in which this calculation

effort can be noticeably limited. Using the characteristic equation as follows

det(A−B(β)T((CBβT)−1CA) = 0. (4.9)

with symbolic degrees of freedom β, further calculations can be done. Using the reverse symbolic

calculation, the noticeable development was performed recently. As a result of this study the

following formula

ΞΘBβT = 0, (4.10)

where Θ =

[
−A(2, 1) A(1, 1)

−A(2, 2) A(1, 2)

]
and Ξ =

[
−C(1, 2) C(1, 1)

]
, was originally postulated (see

Ref. [25]). Preserved β, used in the perfect control design, locating all of the closed-loop perfect

control poles at zero.

Example:

Consider a nonsquare right-invertible second-order system with the open-loop system matrix

A =

[
0.2000 0.4000

−0.1000 0.3000

]
, input matrix B =

[
0.7000 0.1000

−0.2000 −0.8000

]
and CT =

[
1 2

]
. In this

scenario the initial conditions can be any. Thus we have

[
−2 1

] [
0.1000 0.2000

−0.3000 0.4000

] [
0.7000 0.1000

−0.2000 −0.8000

] [
β1

β2

]
= 0.

For
[
−0.3500 −0.0500

] [
β1

β2

]
= 0 we arrive at β =

[
2.8571 −20.0000

]
.

Of course, the σ-inverse has no exclusiveness in terms of obtainable pole-free perfect control.

Thus the pole-free instance with use of nonunique right H-inverse is presented in the next section.

4.4 Application of nonunique H-inverse in the pole-free perfect

control design

In the previous section it was shown that the pole-free perfect control can be obtained using

the right σ-inverse. The proper degree(s) of freedom calculated in dedication for given system

result in pole-freeing perfect feedback. Naturally, the σ-inverse in not the only available tool for

pursuing pole-free perfect control. Identical results can be obtained with the application of the

right H-inverse of Eq. (2.19). The subject of this section has already been applied to the perfect
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control design, however the pole-freeing action was rather overlooked. Thus, the H-inverse is

used here to obtain the proper closed-loop plant.

Example:

Consider a second-order LTI state-space system described with the following matrices A =[
−0.6300 1.0300

0.5900 1.3500

]
, B =

[
0.2000 0.6800

1.6700 1.3400

]
, CT =

[
0.6500

−0.8700

]
and xT0 =

[
7− 2

]
. In this case

the minimum-norm H-inverse results in a single nonzero eigenvalue. It is worth mentioning,

that in this instance the number of degrees of freedom is lower than in the case of σ-inverse

application. By usage of the H-inverse with L = 1.476, we obtain the following right inverse

(CB)R =

[
1.8654

0.2187

]
, which results in linear gain K =

[
−0.0050 −0.0337

0.0743 0.5050

]
. Such state-feedback

perfect control plant behavior provides the signals depicted in figure below.

Figure 4.4: Control, state and output signals: Pole-free H-inverse application

The anticipated system response is obtained here, thus the possibility to achieve pole-free

perfect control with H-inverse employment is now not as issue.

However, all of above-presented cases have one trait in common. The zero reference value

imposed on the system entails the zero-steady states of both control and state variables. A

study covering an extension of pole-free formulas to the nonzero setpoint plants is briefed in the

next section.

4.5 Zero vs. nonzero reference value

The discussed pole-free perfect control instances shown so far, that the zero-steady state can

be achieved in almost no time. However, in plethora of applications the references/setpoints of

output variables constitute set of values other than zero, in general. Of course, the arbitrary

output values can be reached since the system is said to be controllable. Thus, a brief study

over perfect control plants with nonzero reference is conducted here. Naturally, the pole-free

perfect control obtained for a given system can be enriched with the consideration of reference

signal. In such case, the perfect control formula is related to the following form
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u(k) = (CB)RPF(yref (k + 1)−CAx(k)), (4.11)

where (CB)RPF stands for such inverse that places all closed-loop poles at zero. The main

difference between zero and non-zero reference system is a preamplifier applied to the setpoint

values. A static inverse-based gain ensures proper system output behavior. Of course, the

dynamics of control system is not influenced by the arbitrary reference value.

The main issue, raised during this consideration, is the simulation horizon. For zero-reference

systems it was clear that the simulation can be terminated after reaching zero steady-state

values. However in the nonzero case, there are no such clear boundaries since some performance

indices, e.g. control energy, are dependent on simulation time. Therefore, an arbitrary time

limitation can be imposed to the simulation runs. Crucially, same limits can be applied to

both of compared instances. Since the energy-based performances together with the influence

of the mentioned limitations are presented later in the thesis, let us now continue with a simple

simulation example. A comparison between zero and nonzero pole-free perfect control instances

is presented below.

Figure 4.5: Control, state and output signals: Pole-free instance, yref = 0

On the other hand, for the same system but with non-zero setpoint slightly different signals

were obtained. The main achievement here is a fact, that any arbitrary output value can be

obtained in the same number of samples as in the zero-reference scenario. The corresponding

signals are presented below.

Figure 4.6: Control, state and output signals: Pole-free instance, yref 6= 0
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As it is shown, both during zero and nonzero setpoint studies, some interesting energy properties

are revealed. Despite obvious advantages in the speed and settling time, the complex study over

the widely-understood energy performance is presented in the next chapter.

4.6 Summary

The pole-free perfect control phenomena were presented in this section. First, the requirements

that are needed to be fulfilled. These requirements are considering the properties of controlled

state-space system. In general, pole-free perfect control is not obtainable without meeting those

pre-requirements. However, with the assumption of attainable pole-free schemes, the additional

formulas were presented, allowing to place all closed-loop perfect control poles exactly at zero.

The well known rules were applied in order to obtain such linear state-based feedback that

results in a proper closed-loop system matrix.

It is also shown, that all mentioned machinery can be supplied with the use of nonunique

inverses of nonsquare matrices. In particular, the application of right H- and σ-inverse are

subject of this study. Moreover, the case covering the right σ-inverse is supported by interesting

numerical procedure. A symbolic calculation together with matrix-based study led to synthesis

of formula, that allowed to obtain proper (in terms of pole-freeing action) degree of freedom

β. Such procedure enables, without laborious calculations, to perform a number of different

simulation tests providing pole-free perfect control properties.

The simulations of pole-free perfect control instances revealed the deadbeat-like characteris-

tics. With steady-state obtained in almost no time and high signal amplitudes these two control

strategies can be mistaken. Moreover, both of control frameworks have all its eigenvalues equal

to zero, thus additional differentiation was needed to be made. Fortunately, the Jordan nor-

mal form of closed-loop system matrices constitutes clear determinant and distinction between

deadbeat and pole-free perfect control systems.

Additionally, a study on other then zero reference plant is conducted. With the adjective

static matrix gain applied to the output reference signal, the pole-free perfect control for arbi-

trary reference values is obtained. Anyway, it is clear, that in cases covering nonzero reference,

the control signals can be divided into two parts, dealing with system dynamics and reference

value, respectively. Of course, the pole-free perfect control sustains its properties for the arbi-

trary setpoint of control system output vector.

Moreover, some interesting energy-based features occurred. The disclosure of instances,

where the pole-free approach results in lower control energy than in the case of minimum-norm

inverse applied to the perfect control system design, was a premise to a more complex energy-

based study. The research studies covering an attempt to prejudge the energy outcome of perfect

control scenario are presented in the next section.
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Chapter 5

Energy performance

5.1 Energy of state variables

The state signals together with their energy were subject of different studies over past years.

Numerous papers have considered the state variables in the terms of stability, robustness, control

speed and energy efficiency. Throughout this section the main interest is focused on the state

variability and related state energy. Therefore, the energy of state variables can be calculated

with the following formula

Ex =

N−1∑
k=0

x2(k). (5.1)

Of course, in the case of considered vectors this formula can be presented in an equivalent form

as follows

Ex = tr(xT(k)x(k)). (5.2)

There are also some interesting properties that can be obtained by application of well known

relations into this consideration. Moreover, in case of positive systems, i.e. systems with signals

having only non-negative values, the energy of state variables is in obvious relation with the

sum of state signals. The mentioned sum can be obtained with the following formula

X =

N−1∑
k=0

x(k). (5.3)

Since the subsequent samples of state variable are successive in terms of geometric series, the

following equation can also be obtained with [55]

X = X0 +
X1

1− λ
, (5.4)

where λ is the only non-zero closed-loop eigenvalue. This eigenvalue, here λ < 1 can be treated

as the decrement of suppression. Moreover X0 and X1 are energies of respective state samples.
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Thus, as originally presented in Ref. [29], the norm-based index as follows should be recalled

Nx = ||A∗x0||. (5.5)

This index can be used in order to anticipate the energy of state vector. Of course, this index

does not fully cover all state-feedback systems, but the useful behavior of presented equation is

depicted in the simulation example made below.

Example:

Consider a second-order LTI state-space system described with the following matrices A =[
−0.7800 −0.3400

1.0300 −0.2700

]
, B =

[
1.0400 0.2800

−0.3000 0.2000

]
, CT =

[
0.5500− 0.7100

]
. In this experiment

three different scenarios were considered. Two of them being the perfect control instances with

application of right T -inverse and pole-free σ-inverse, respectively. However, the greatest part of

numerous simulation runs is constituted by perfect control simulations with the use of randomly

generated degrees of freedom β of right σ-inverse. The obtained results are presented below.

Figure 5.1: Energy-based norm vs. energy of state variables

It is clear now, that the minimization of presented index seems to be a reasonable action.

However, the energy within state variables is not strictly connected to the control energy. Thus,

the issue concerning the energy of control signals is shown in the next section.
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5.2 Control energy of zero-reference systems

Optimization of systems using performance indices based on the amount of energy fed into the

control system is an actual scientific topic. Widespread application of energy efficient solutions

affects almost every aspect of modern daily life, including transportation, construction tech-

nology, household goods and environmental protection. In the industrial application of energy

saving methodology the substantial improvement can be achieved both in software and hard-

ware layers. The development in lowering of consumed energy is often connected with material

engineering which allows to go beyond previously established boundaries. Same in perfect con-

trol design, the control signals can be optimized in the context of consumed energy [56]. As the

simple examples from Section 4.2 have shown, the energy-related performance can be unintuitive

since in some cases the pole-free instances result in both higher speed and lower control cost.

Thus an attempt to prejudge the control energy is presented here.

The summarized energy of control signals has already been mentioned. Nevertheless, the

definition from Eq. (4.8) is equivalent to the following form

E =

N−1∑
k=0

||u(k)||2. (5.6)

From the definition of matrix norm the energy can be also calculated according to the formula

as follows

E =
N−1∑
k=0

〈uT(k),u(k)〉. (5.7)

Now, in the considered case of zero-reference state-feedback control it is clear, that we can

rewrite this relation to the following form [29]

E =

N−1∑
k=0

tr(KTKx(k)xT(k)). (5.8)

It is worth mentioning, that the trace is invariant under cyclic permutation, which allows to

group similar terms together. As it was already shown, the arbitrary sample of state vector can

be calculated from initial conditions and proper power of closed-loop system matrix A∗. Thus

the following equation holds

E =

N−1∑
k=0

tr(KTK(A∗)kx(0)((A∗)kx(0))T), (5.9)

constituting a basis for further energy-based considerations.
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Some conclusions were drawn from the study originally presented in Ref. [28]. The final form of

performance index from the mentioned paper is as follows

N1 = ||KTK|| ||(A∗)x0x
T
0 (A∗)T||. (5.10)

Nevertheless, the unpublished yet recent study shows that the weighted sum, instead of classic

one, can also be useful in the pursuit of possibly low control energy. In this way we obtain

N2 = ||KTK|| ||eA∗
x0x
T
0 e

A∗T ||. (5.11)

This performance index will be used in order to determine if the energy of pole-free or stable-pole

instances is expected to result in lower perfect control energy.

Some simulation experiments were performed. and similarly to the previous, state-based

consideration, three different instances were considered to the perfect control design, i.e. pole-

free, T - and random σ-inverse derived approaches.

Figure 5.2: Control energy-based norm vs. control energy

Of course, the presented framework does not cover all possible cases. However, the shape of

this characteristic is not the same for all systems, but justifies the minimization of the consid-

ered performance index in context of control energy optimization. A number of examples with

different characteristics are presented below.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Overview of different energy-based characteristics
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5.3 Summary

The energy-based consideration is presented within this chapter. At the beginning a basic

information about energy-based optimization were presented. Then a short review of energy of

state variables was performed. With an application of the analytic performance index it was

shown, that the energy stored within the state variables can be effectively minimized. A single

simulation instance confirmed, that the presented approach leads to possibly low state energy.

However, more interesting seems to be a study covering energy of control signals, also pre-

sented in this chapter. A study with deep analytical foundations led to formulation of two

performance indices that were successfully applied to the perfect control design. It is shown,

that minimization of presented final index N2 can result in lower control strategy. The use

of complex matrix calculation allowed to shape the energy characteristic to have single region

containing the minimum-energy point.

Therefore, the mentioned analytical indices can be used during comparison of pole-free and

stable-pole perfect control instances. With simple, obtained with almost no computational

effort, index the process of proper perfect control design can be significantly shortened. Without

burdensome simulation effort the control energy of pole-free perfect control can automatically

be predicted. With comparison of values of proposed indices there is a wide range of inverses for

which the indices result in lower control energy. Therefore, the usage of formulas presented in

this chapter seems to have wide area of application. Nevertheless, the proposed equation (5.11)

does not cover all of possible cases, thus this topic is yet not closed.

Additionally, a study considering perfect control systems with non-zero reference was per-

formed here. In contrast to previous study the steady state of control signals are the main focus

here. In some manner the admission of non-zero reference system simplifies the whole issue.

As the energy of steady control signals depends only on the inverse applied to the reference

input values, the main determinant will be the norm of mentioned inverse. Of course, the whole

consideration of zero-referenced systems can also be used here to minimize the control energy.

The sufficient requirement is that the steady-states of compared control signals have the same

amplitude, respectively, thus the energy of transient states are crucial again.

Summing up, a wide study considering control and state energy of perfect control systems

was performed here. A useful tool was given with possible application in determining which

approach, pole-free or stable-pole, will result in lower control energy. Nevertheless, there are

still many yet unsolved issues, such as finding minimum-energy perfect control.
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Chapter 6

Conclusions

A solution of pole-free perfect control problem is given in this thesis. Moreover, the inverses of

nonsquare matrices with infinite number of possible degrees of freedom guarantee that the pole-

free property can be obtained for considered right-invertible LTI MIMO state-space systems. The

undertaken study of state-feedback-based perfect control strategy shows that the mentioned law

can be enhanced with the application of proper inverse into the control design process. It is shown

in the Ph.D. dissertation that the zero closed-loop pole location enabled by mentioned nonunique

inverses results in measurable merits. After fulfilling the requirements presented throughout the

work, the properties connected to higher control speed and stability are available.

The pole-free perfect control strategy obtained for a class of nonsquare systems also yields

an improvement in the context of the summarized energy fed into the plant during the control

action. The energy-related performance indices are presented in order to facilitate the minimum-

energy perfect control design. With the analytical formula, the possibility to anticipate which

degrees of freedom, being a part of closed-loop system matrix, results in lower control cost. It

is worth mentioning that there are a plethora of pole-free cases with better energy performance

than the stable-pole instances. This behavior is rather unexpected as it overthrows the usual

compromise between control speed/accuracy and energy. Advanced work considering these

peculiarities is expected in the near future.

The study presented in this thesis naturally can be a foundation for further considerations.

For example, the extension of pole-free approach to time-varying or nonlinear plants still poses

significant scientific challenge. Moreover, a universal formula allowing to numerically obtain the

pole-free perfect control for specified inverses seems to be worthy of effort.

Summing up, the pole-free perfect control condensed in this thesis combines multiple complex

branches of math and control engineering to obtain a possibly fast, cheap and accurate control

strategy.
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